Abstract:
Physics of magnetic domains of conventional magnetic materials can be well described by minimization Landau-Lifshitz free energy. However, for magnetic oxides, competition between various types of exchange interactions has often led to complex magnetic domain structures that are far from being understood. One of the most typical example is the domain structure in colossal magnetoresistive manganites, which is featured by spatial coexistence of ferromagnetic, antiferromagnetic and even spin glass domains. These domains are not only in different magnetic states, but are also in different conducting states. Based on the understanding of the physical origin of the complex magnetic domains in oxides, we have developed various methods to control the domain patterns in oxides and fabricated various spintronic devices.